Simaerep Widget
Widget_Simaerep.RdA widget that creates a simaerep visualisation of group-level metric results. It plots the mean cumulative numerator count per denominator in the left panel and highlights groups based on the over and under-reporting probability calculated by the simaerep bootstrap algorithm. Flagged groups are shown in the right panel including the total numerator counts per single patient.
Arguments
- dfInput
data.frame created by
Input_CumCount()- dfFlagged
data.frame created by
Flag_Simaerep()- dfGroups
`data.frame` Group-level metadata dictionary. Created by passing CTMS site and study data to [MakeLongMeta()]. Expected columns: `GroupID`, `GroupLevel`, `Param`, `Value`.
- lMetric
`list` Metric-specific metadata for use in charts and reporting. Created by passing an `lWorkflow` object to [MakeMetric()] and turing it into a list. Expected columns: `File`,`MetricID`, `Group`, `Abbreviation`, `Metric`, `Numerator`, `Denominator`, `Model`, `Score`, and `strThreshold`. For more details see the Data Model vignette: `vignette("DataModel", package = "gsm.kri")`.
- strStudyId
character, study label, Default: "StudyID"
- strScoreCol
character, name of score column in dfFlagged, Default: "Score"
- vColors
vector, named hex values for every Flag value in dfFlagged$Flag, Default NULL
- bAddGroupSelect
`logical` Add a dropdown to highlight sites? Default: `TRUE`.
- strShinyGroupSelectID
`character` Element ID of group select in Shiny context. Default: `'GroupID'`.
- strOutputLabel
`character` Label describing the output object, which is assigned to the `output_label` attribute of the output object and appears in the report generated by [gsm.kri::Report_KRI()]..
- ...
`any` Additional chart configuration settings.
See also
Widget_SimaerepOutput for use in Shiny apps
renderWidget_Simaerep for use in Shiny apps
Examples
dfInput <- Input_CumCount(
dfSubjects = clindata::rawplus_dm,
dfNumerator = clindata::rawplus_ae,
dfDenominator = clindata::rawplus_visdt %>% dplyr::mutate(visit_dt = lubridate::ymd(visit_dt)),
strSubjectCol = "subjid",
strGroupCol = "invid",
strGroupLevel = "Site",
strNumeratorDateCol = "aest_dt",
strDenominatorDateCol = "visit_dt"
)
dfAnalyzed <- Analyze_Simaerep(dfInput)
dfFlagged <- Flag_Simaerep(dfAnalyzed, vThreshold = c(-0.99, -0.95, 0.95, 0.99))
#> ℹ Sorted dfFlagged using custom Flag order: 2.Sorted dfFlagged using custom Flag order: -2.Sorted dfFlagged using custom Flag order: 1.Sorted dfFlagged using custom Flag order: -1.Sorted dfFlagged using custom Flag order: 0.
Widget_Simaerep(dfInput, dfFlagged)