Skip to contents

Introduction

This vignette contains sample code showing how to use the gsm extension gsm.simaerep using sample data from clindata.

In order to familiarize yourself with the gsm package, please refer to the gsm cookbook.

Installation

install.packages("pak")
pak::pak("Gilead-BioStats/clindata")
pak::pak("Gilead-BioStats/gsm.core")
pak::pak("Gilead-BioStats/gsm.mapping")
pak::pak("Gilead-BioStats/gsm.kri")
pak::pak("Gilead-BioStats/gsm.reporting")
pak::pak("IMPALA-Consortium/gsm.simaerep")

{gsm.simaerep} Functions

simaerep expects the cumulative count of numerator events per denominator event per subject as input.

In this example we we are calculating the cumulative AE count per visit per patient per site.

dfInput <- Input_CumCount(
  dfSubjects = clindata::rawplus_dm,
  dfNumerator = clindata::rawplus_ae,
  dfDenominator = clindata::rawplus_visdt %>% dplyr::mutate(visit_dt = lubridate::ymd(visit_dt)),
  strSubjectCol = "subjid",
  strGroupCol = "siteid",
  strGroupLevel = "Site",
  strNumeratorDateCol = "aest_dt",
  strDenominatorDateCol = "visit_dt"
)

dfInput %>%
  dplyr::filter(max(Numerator) > 1, .by = "SubjectID") %>%
  head(25) %>%
  knitr::kable()
SubjectID GroupID GroupLevel Numerator Denominator
0486 10 Site 0 1
0486 10 Site 0 2
0486 10 Site 0 3
0486 10 Site 0 4
0486 10 Site 0 5
0486 10 Site 0 6
0486 10 Site 0 7
0486 10 Site 0 8
0486 10 Site 2 9
0486 10 Site 2 10
0486 10 Site 2 11
0486 10 Site 2 12
0486 10 Site 2 13
0486 10 Site 2 14
0486 10 Site 2 15
0486 10 Site 2 16
0486 10 Site 2 17
0486 10 Site 2 18
0486 10 Site 2 19
0486 10 Site 2 20
0486 10 Site 2 21
0489 10 Site 0 1
0489 10 Site 0 2
0489 10 Site 2 3
0489 10 Site 2 4

Now we can analyze the data using Analyze_Simaerep() and add flags with Flag_Simaerep() which adds a Score between -1 and 1. Positive values indicate the over-reporting probability and negative values indicate the under-reporting probability.

ExpectedNumerator is the number of expected AEs for a site with the same patient configuration. ScoreMult is Score with applied multiplicity correction.

dfAnalyzed <- Analyze_Simaerep(dfInput)
dfFlagged <- Flag_Simaerep(dfAnalyzed, vThreshold = c(-0.99, -0.95, 0.95, 0.99))
#>  Sorted dfFlagged using custom Flag order: 2.Sorted dfFlagged using custom Flag order: -2.Sorted dfFlagged using custom Flag order: 1.Sorted dfFlagged using custom Flag order: -1.Sorted dfFlagged using custom Flag order: 0.


dfFlagged %>%
  arrange(Score) %>%
  head(25) %>%
  knitr::kable()
GroupID GroupLevel Numerator Denominator Metric Score ScoreMult ExpectedNumerator Flag
10 Site 8 390 0.0205128 -1.000 -1.0000000 -55.354 -2
140 Site 143 1442 0.0991678 -1.000 -1.0000000 -96.983 -2
141 Site 12 261 0.0459770 -1.000 -1.0000000 -32.401 -2
143 Site 25 597 0.0418760 -1.000 -1.0000000 -74.483 -2
167 Site 14 312 0.0448718 -1.000 -1.0000000 -39.884 -2
172 Site 42 601 0.0698835 -1.000 -1.0000000 -59.083 -2
173 Site 35 596 0.0587248 -1.000 -1.0000000 -67.060 -2
54 Site 18 390 0.0461538 -1.000 -1.0000000 -51.265 -2
85 Site 4 276 0.0144928 -1.000 -1.0000000 -41.141 -2
127 Site 0 101 0.0000000 -0.999 -0.9840000 -17.279 -2
155 Site 11 230 0.0478261 -0.999 -0.9840000 -29.469 -2
144 Site 0 80 0.0000000 -0.998 -0.9765333 -12.736 -2
156 Site 6 188 0.0319149 -0.998 -0.9765333 -24.119 -2
176 Site 1 107 0.0093458 -0.998 -0.9765333 -16.686 -2
77 Site 23 352 0.0653409 -0.998 -0.9765333 -35.554 -2
92 Site 18 314 0.0573248 -0.995 -0.9450000 -34.447 -2
114 Site 7 161 0.0434783 -0.992 -0.9217778 -22.088 -2
67 Site 12 221 0.0542986 -0.992 -0.9217778 -22.467 -2
81 Site 0 65 0.0000000 -0.991 -0.9166316 -9.970 -2
30 Site 11 169 0.0650888 -0.977 -0.7976000 -19.942 -1
113 Site 9 165 0.0545455 -0.973 -0.7800000 -17.002 -1
63 Site 18 240 0.0750000 -0.972 -0.7800000 -23.270 -1
29 Site 8 143 0.0559441 -0.971 -0.7800000 -15.839 -1
187 Site 4 107 0.0373832 -0.970 -0.7800000 -13.933 -1
73 Site 4 96 0.0416667 -0.966 -0.7606400 -12.310 -1
dfFlagged %>%
  arrange(Score) %>%
  tail(5) %>%
  knitr::kable()
GroupID GroupLevel Numerator Denominator Metric Score ScoreMult ExpectedNumerator Flag
150 Site 33 47 0.7021277 0.994 0.8044444 24.924 2
43 Site 397 695 0.5712230 1.000 1.0000000 277.958 2
75 Site 93 210 0.4428571 1.000 1.0000000 58.861 2
83 Site 74 140 0.5285714 1.000 1.0000000 51.142 2
91 Site 129 366 0.3524590 1.000 1.0000000 66.418 2

These results are compatible with the gsm package for visualization.

`simaerep scores represent are related to the metric ratio do not use a metric based threshold for flagging. Therefore we do not need to calculate boundaries to pass to the plotting function.

gsm.kri::Visualize_Scatter(
  dfFlagged,
  dfBounds = NULL,
  strGroupLabel = "GroupLevel",
  strUnit = "Visits"
)

Widget_ScatterPlot(
  dfFlagged,
  dfBounds = NULL,
  bDebug = FALSE
)
Widget_BarChart(
  dfFlagged
)

To compare we can also use the Score with applied multiplicity correction. For this we need to lower the threshold to be less sensitive to get a similar readout. Here we can see that overall the multiplicity correction dampens the score values and reduces the number of flagged sites. Simulation studies with {simaerep} have shown that multiplicity correction decreases detection rates. Nevertheless when monitoring a limited number of studies with many sites a sharper signal might be preferred.

dfFlagged_Mult <- Flag_Simaerep(
  dfAnalyzed %>%
    mutate(Score = ScoreMult),
  vThreshold = c(-0.95, -0.75, 0.75, 0.95)
  )
#>  Sorted dfFlagged using custom Flag order: 2.Sorted dfFlagged using custom Flag order: -2.Sorted dfFlagged using custom Flag order: 1.Sorted dfFlagged using custom Flag order: -1.Sorted dfFlagged using custom Flag order: 0.

Widget_BarChart(
  dfFlagged_Mult
)

Report Building

We can create a workflow to create the gsm KRI report.

Mapping

lRaw <- list(
  Raw_SUBJ = clindata::rawplus_dm,
  Raw_AE = clindata::rawplus_ae,
  Raw_VISIT = clindata::rawplus_visdt,
  Raw_PD = clindata::ctms_protdev,
  Raw_ENROLL = clindata::rawplus_enroll,
  Raw_SITE = clindata::ctms_site,
  Raw_STUDY = clindata::ctms_study 
)

mapping_wf <- gsm.core::MakeWorkflowList(
  strNames = NULL,
  strPath = system.file("workflow/1_mappings", package = "gsm.simaerep"),
  strPackage = NULL
)

lIngest <- gsm.mapping::Ingest(lRaw, gsm.mapping::CombineSpecs(mapping_wf))

lMapped <- gsm.core::RunWorkflows(lWorkflows = mapping_wf, lData = lIngest)

Metrics

metrics_wf <- gsm.core::MakeWorkflowList(
  strNames = NULL,
  strPath = system.file("workflow/2_metrics", package = "gsm.simaerep"),
  strPackage = NULL
)

lAnalyzed <- gsm.core::RunWorkflows(lWorkflows = metrics_wf, lData = lMapped)
#> Warning: The `nMinDenominator` argument of `Summarize()` is deprecated as of gsm.core
#> 1.0.0.
#>  Please use the `nAccrualThreshold` and `strAccrualMetric` arguments in
#>   `Flag()` instead
#>  The deprecated feature was likely used in the gsm.core package.
#>   Please report the issue at
#>   <https://github.com/Gilead-BioStats/gsm.core/issues>.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.

Report Generation - Workflow


reporting_wf <- gsm.core::MakeWorkflowList(
  strNames = NULL,
  strPath = system.file("workflow/3_reporting", package = "gsm.simaerep"),
  strPackage = NULL
)


lReport <- gsm.core::RunWorkflows(
  lWorkflows = reporting_wf, 
  lData = c(
    lMapped,
    list(
      lAnalyzed = lAnalyzed,
      lWorkflows = metrics_wf
    )
  )
)

module_wf_gsm <- gsm.core::MakeWorkflowList(
  strNames = NULL,
  strPath = system.file("workflow/4_modules", package = "gsm.simaerep"),
  strPackage = NULL
)

# we cannot set a dynamic link to the report path in the yaml files
report_path <- system.file("report", "Report_KRI.Rmd", package = "gsm.simaerep")
n_steps <- length(module_wf_gsm$report_kri_site$steps)
module_wf_gsm$report_kri_site$steps[[n_steps]]$params$strInputPath <- report_path

lModule <- gsm.core::RunWorkflows(module_wf_gsm, lReport)
#> /opt/hostedtoolcache/pandoc/3.1.11/x64/pandoc +RTS -K512m -RTS /tmp/Rtmp4NgMAT/Report_KRI.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /home/runner/work/gsm.simaerep/gsm.simaerep/vignettes/kri_report_AAAA0000000_Site_20251030.html --lua-filter /home/runner/work/_temp/Library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /home/runner/work/_temp/Library/rmarkdown/rmarkdown/lua/latex-div.lua --embed-resources --standalone --variable bs3=TRUE --section-divs --table-of-contents --toc-depth 3 --variable toc_float=1 --variable toc_selectors=h1,h2,h3 --variable toc_smooth_scroll=1 --variable toc_print=1 --template /home/runner/work/_temp/Library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --css styles.css --include-in-header /tmp/Rtmp4NgMAT/rmarkdown-str2374722090cf.html

Report Generation - Script


dfMetrics <- gsm.reporting::MakeMetric(lWorkflows = metrics_wf)

lAnalyzed <- gsm.core::RunWorkflows(lWorkflows = metrics_wf, lData = lMapped)


dfResults <- gsm.reporting::BindResults(
  lAnalysis = lAnalyzed,
  strName = "Analysis_Summary",
  dSnapshotDate = Sys.Date(),
  strStudyID = "ABC-123"
)

dfGroups <- dplyr::bind_rows(
  lMapped$Mapped_STUDY,
  lMapped$Mapped_SITE,
  lMapped$Country
)

dfBounds <- gsm.reporting::MakeBounds(
  dfResults = dfResults,
  dfMetrics = dfMetrics
)

# we use a different tooltip for the simaerep charts
lCharts_Identity <- gsm.kri::MakeCharts(
  dfResults = dfResults %>%
    filter(GroupLevel == "Site"),
  dfMetrics = dfMetrics %>%
    filter(GroupLevel == "Site", AnalysisType == "identity"),
  dfGroups = dfGroups,
  dfBounds = NULL,
  bDebug = FALSE,
  resultTooltipKeys = c(
        "ExpectedNumerator",
        "Score",
        "Metric",
        "Numerator",
        "Denominator"
  )
)

lCharts_Rate <- gsm.kri::MakeCharts(
  dfResults = dfResults %>%
    filter(GroupLevel == "Site"),
  dfMetrics = dfMetrics %>%
    filter(GroupLevel == "Site", AnalysisType == "rate"),
  dfGroups = dfGroups,
  dfBounds = dfBounds,
  bDebug = FALSE
)

lCharts <- c(
  lCharts_Identity,
  lCharts_Rate
)

gsm.kri::Report_KRI(
  lCharts = lCharts,
  dfResults = dfResults,
  dfGroups = dfGroups,
  dfMetrics = dfMetrics,
  strOutputFile = "report_kri_site.html",
  strInputPath = system.file("report", "Report_KRI.Rmd", package = "gsm.simaerep")
)
#> /opt/hostedtoolcache/pandoc/3.1.11/x64/pandoc +RTS -K512m -RTS /tmp/Rtmp4NgMAT/Report_KRI.knit.md --to html4 --from markdown+autolink_bare_uris+tex_math_single_backslash --output /home/runner/work/gsm.simaerep/gsm.simaerep/vignettes/report_kri_site.html --lua-filter /home/runner/work/_temp/Library/rmarkdown/rmarkdown/lua/pagebreak.lua --lua-filter /home/runner/work/_temp/Library/rmarkdown/rmarkdown/lua/latex-div.lua --embed-resources --standalone --variable bs3=TRUE --section-divs --table-of-contents --toc-depth 3 --variable toc_float=1 --variable toc_selectors=h1,h2,h3 --variable toc_smooth_scroll=1 --variable toc_print=1 --template /home/runner/work/_temp/Library/rmarkdown/rmd/h/default.html --no-highlight --variable highlightjs=1 --variable theme=bootstrap --css styles.css --include-in-header /tmp/Rtmp4NgMAT/rmarkdown-str23741001381b.html